Rheinwerk Computing < openbook >

 
Inhaltsverzeichnis
1 Einleitung
2 Die Programmiersprache Python
Teil I Einstieg in Python
3 Erste Schritte im interaktiven Modus
4 Der Weg zum ersten Programm
5 Kontrollstrukturen
6 Dateien
7 Das Laufzeitmodell
8 Funktionen, Methoden und Attribute
9 Informationsquellen zu Python
Teil II Datentypen
10 Das Nichts – NoneType
11 Operatoren
12 Numerische Datentypen
13 Sequenzielle Datentypen
14 Zuordnungen
15 Mengen
16 Collections
17 Datum und Zeit
18 Aufzählungstypen – Enum
Teil III Fortgeschrittene Programmiertechniken
19 Funktionen
20 Modularisierung
21 Objektorientierung
22 Ausnahmebehandlung
23 Iteratoren
24 Kontextobjekte
25 Manipulation von Funktionen und Methoden
Teil IV Die Standardbibliothek
26 Mathematik
27 Kryptografie
28 Reguläre Ausdrücke
29 Schnittstelle zu Betriebssystem und Laufzeitumgebung
30 Kommandozeilenparameter
31 Dateisystem
32 Parallele Programmierung
33 Datenspeicherung
34 Netzwerkkommunikation
35 Debugging und Qualitätssicherung
36 Dokumentation
Teil V Weiterführende Themen
37 Anbindung an andere Programmiersprachen
38 Distribution von Python-Projekten
39 Grafische Benutzeroberflächen
40 Python als serverseitige Programmiersprache im WWW – ein Einstieg in Django
41 Wissenschaftliches Rechnen
42 Insiderwissen
43 Von Python 2 nach Python 3
A Anhang
Stichwortverzeichnis

Download:
- Beispielprogramme, ca. 464 KB

Jetzt Buch bestellen
Ihre Meinung?

Spacer
<< zurück
Python 3 von Johannes Ernesti, Peter Kaiser
Das umfassende Handbuch
Buch: Python 3

Python 3
Pfeil 39 Grafische Benutzeroberflächen
Pfeil 39.1 Toolkits
Pfeil 39.2 Einführung in tkinter
Pfeil 39.2.1 Ein einfaches Beispiel
Pfeil 39.2.2 Steuerelementvariablen
Pfeil 39.2.3 Der Packer
Pfeil 39.2.4 Events
Pfeil 39.2.5 Steuerelemente
Pfeil 39.2.6 Zeichnungen – das Canvas-Widget
Pfeil 39.2.7 Weitere Module
Pfeil 39.3 Einführung in PyQt
Pfeil 39.3.1 Installation
Pfeil 39.3.2 Grundlegende Konzepte von Qt
Pfeil 39.3.3 Entwicklungsprozess
Pfeil 39.4 Signale und Slots
Pfeil 39.5 Wichtige Widgets
Pfeil 39.5.1 QCheckBox
Pfeil 39.5.2 QComboBox
Pfeil 39.5.3 QDateEdit, QTimeEdit, QDateTimeEdit
Pfeil 39.5.4 QDialog
Pfeil 39.5.5 QLineEdit
Pfeil 39.5.6 QListWidget, QListView
Pfeil 39.5.7 QProgressBar
Pfeil 39.5.8 QPushButton
Pfeil 39.5.9 QRadioButton
Pfeil 39.5.10 QSlider, QDial
Pfeil 39.5.11 QTextEdit
Pfeil 39.5.12 QWidget
Pfeil 39.6 Zeichenfunktionalität
Pfeil 39.6.1 Werkzeuge
Pfeil 39.6.2 Koordinatensystem
Pfeil 39.6.3 Einfache Formen
Pfeil 39.6.4 Grafiken
Pfeil 39.6.5 Text
Pfeil 39.6.6 Eye Candy
Pfeil 39.7 Model-View-Architektur
Pfeil 39.7.1 Beispielprojekt: ein Adressbuch
Pfeil 39.7.2 Auswählen von Einträgen
Pfeil 39.7.3 Bearbeiten von Einträgen
 
Zum Seitenanfang

39.4    Signale und Slots Zur vorigen ÜberschriftZur nächsten Überschrift

Beim Schreiben eines Programms mit grafischer Benutzeroberfläche wird das Prinzip der ereignisgesteuerten Programmierung angewandt. Dieses Prinzip sieht nicht vor, dass ein Programm sequenziell von oben nach unten abgearbeitet wird, sondern führt beim Auftreten bestimmter Ereignisse einen Code-Abschnitt aus, der vom Programmierer für dieses Ereignis vorgesehen wurde. Die Anwendung der ereignisgesteuerten Programmierung ist im Falle einer grafischen Benutzeroberfläche notwendig, da hier der Benutzer das Programm steuert und nicht das Programm den Benutzer, wie es bei einer Konsolenanwendung der Fall war. Der Benutzer steuert das Programm durch seine Eingaben, die im Programm in Form von Ereignissen ankommen. Wann und in welcher Reihenfolge der Benutzer seine Eingaben macht, ist durch das Programm nicht vorgegeben.

In Qt finden sich zwei Techniken der ereignisgesteuerten Programmierung: zum einen Events und zum anderen Signale und Slots. Beide Techniken werden Sie im Folgenden kennenlernen.

Jedes Widget in der grafischen Benutzeroberfläche wird programmintern durch eine Instanz einer entsprechenden Qt-Klasse repräsentiert. Jede dieser Klassen bietet Eventhandler an. Das sind Methoden, die der Programmierer in einer abgeleiteten Klasse überschreiben kann, um beim Eintreten eines speziellen Ereignisses (engl. event) eigenen Code ausführen zu können. Events werden nur für wenige Ereignisse verwendet, die aber häufig eintreten. Ein Beispiel für ein solches Ereignis ist das paintEvent, das immer dann eintritt, wenn der Inhalt eines Widgets neu gezeichnet werden muss. Das Widget reagiert auf das Event durch Ausführung seines Eventhandlers. Dies kann unter Umständen sehr häufig passieren. Ein Beispiel für die Implementation eines Eventhandlers finden Sie in Abschnitt 39.6 im Zusammenhang mit der Zeichenfunktionalität von Qt.

Neben den Events bietet das Qt-Framework Signale und Slots für die Behandlung von Ereignissen an. Dieses zentrale Konzept zur Kommunikation von Qt-Objekten ist womöglich das größte Unterscheidungsmerkmal zwischen Qt und anderen GUI-Toolkits.

Ein Signal wird von einem Widget gesendet, wenn ein bestimmtes Ereignis, beispielsweise eine Benutzereingabe, eingetreten ist. Es gibt für jedes Widget in Qt vordefinierte Signale für die meisten Anwendungsfälle. Zusätzlich ist es möglich, eigene Signale zu selbst bestimmten Ereignissen zu senden.

Um ein Signal zu empfangen, muss ein Slot (dt. »Steckplatz«) eingerichtet werden. Ein Slot ist eine Funktion oder Methode, die immer dann aufgerufen wird, wenn ein bestimmtes Signal gesendet wird. Dazu muss ein Slot mit einem Signal verbunden werden. Es ist möglich, einen Slot mit mehreren Signalen zu verbinden.

Im Folgenden wird das Beispiel des letzten Kapitels zu einer sinnvollen Anwendung erweitert. Diese Anwendung soll die Daten, die der Benutzer in den Dialog eingibt, in das parallel geöffnete Konsolenfenster ausgeben, sofern der Benutzer die Eingaben durch Anklicken der OK-Schaltfläche bestätigt. Beim Klick auf Abbrechen sollen keine Daten ausgegeben werden.

import sys
from PyQt5 import QtWidgets, QtCore, uic
class MeinDialog(QtWidgets.QDialog):
def __init__(self, parent=None):
super().__init__(parent)
self.ui = uic.loadUi("hauptdialog.ui", self)
# Slots einrichten
self.ui.buttonOK.clicked.connect(self.onOK)
self.ui.buttonAbbrechen.clicked.connect(self.onAbbrechen)

def onOK(self):
# Daten auslesen
print("Vorname: {}".format(self.ui.vorname.text()))
print("Nachname: {}".format(self.ui.nachname.text()))
print("Adresse: {}".format(self.ui.adresse.toPlainText()))
datum = self.ui.geburtsdatum.date().toString("dd.MM.yyyy")
print("Geburtsdatum: {}".format(datum))
if self.ui.agb.checkState():
print("AGBs akzeptiert")
if self.ui.katalog.checkState():
print("Katalog bestellt")
self.close()

def onAbbrechen(self):
print("Schade")
self.close()

Im Konstruktor der Dialogklasse MeinDialog werden die clicked-Signale für den OK- und den Abbrechen-Button mit den dafür vorgesehenen Slots verbunden. Die clicked-Signale werden immer dann ausgelöst, wenn der Benutzer die Schaltfläche anklickt. Die Signale, die ein Widget bereitstellt, sind als Attribute in der entsprechenden Widget-Instanz enthalten. Um ein Signal mit einem Slot zu verbinden, wird die Methode connect des Signals aufgerufen und der Slot als Parameter übergeben. Im Beispielprogramm werden die clicked-Signale der Schaltflächen ui.buttonOK und ui.buttonAbbrechen mit den Slots onOK und onAbbrechen verbunden. Diese werden ab jetzt immer dann aufgerufen, wenn der Benutzer die assoziierte Schaltfläche anklickt.[ 193 ](Dieser komfortable Weg, Signale und Slots zu verbinden, ist eine Neuerung von PyQt und im C++-Framework Qt so nicht möglich. Sollten Sie mit Qt bereits vertraut sein, sei Ihnen gesagt, dass die klassische Variante des Verbindens von Signalen und Slots auch mit PyQt funktioniert, allerdings den Nachteil mit sich bringt, dass die C++-Schnittstelle der Signale angegeben werden muss. )

[»]  Hinweis

In diesem Fall sind die verbundenen Signale parameterlos. Es gibt komplexere Signale, die einen oder mehrere Parameter übergeben. In einem solchen Fall muss auch der verbundene Slot eine entsprechende Anzahl von Parametern erwarten.

In der Methode onOK sollen die Eingaben des Benutzers aus den verschiedenen Widgets des Hauptdialogs ausgelesen werden. Jedes dieser Widgets wird durch eine Instanz einer entsprechenden Qt-Klasse repräsentiert. Die Namen dieser Instanzen haben wir zuvor im Qt Designer festgelegt. Welches Widget dabei welchen Namen bekam, können Sie in der Tabelle in Abschnitt 39.3.3, »Entwicklungsprozess«, nachlesen.

Über die angesprochenen Attribute können wir den Inhalt der Steuerelemente auslesen. Wie dies geschieht, ist von Widget zu Widget verschieden. So kann beispielsweise auf den Inhalt eines Line-Edit-Widgets über die Methode text zugegriffen werden. Erwähnenswert ist noch, dass die Methode date der Date-Edit-Instanz geburtsdatum das gespeicherte Datum nicht direkt in Form eines Strings, sondern in Form einer QDate-Instanz zurückgibt. Diese muss durch Aufruf der Methode toString in einen String konvertiert werden. Zum Schluss, nachdem alle Daten ausgelesen und ausgegeben wurden, wird der Dialog durch Aufruf der Methode close geschlossen.

Im zweiten Slot, onAbbrechen, sind, abgesehen vom Schließen des Dialogs, keine weiteren Operationen notwendig.

app = QtWidgets.QApplication(sys.argv)
dialog = MeinDialog()
dialog.show()
sys.exit(app.exec_())

Bei dem Code, der die Applikations- und Dialogklasse instanziiert und die Main Event Loop startet, handelt es sich um denselben, der schon im letzten Beispielprogramm seinen Dienst getan hat.

[»]  Hinweis

Wie das Beispiel demonstriert, öffnet auch ein Python-Programm mit grafischer Benutzeroberfläche unter Windows immer noch ein Konsolenfenster, in das mittels print geschrieben werden kann.

Das mag in einigen Fällen wünschenswert sein, ist jedoch häufig störend, wenn die Kommunikation mit dem Benutzer vollständig über die grafische Oberfläche ablaufen soll. Wenn Sie nicht möchten, dass ein Konsolenfenster geöffnet wird, können Sie die Dateiendung der Python-Programmdatei von .py nach .pyw ändern. Dann werden alle Ausgaben in die Konsole unterdrückt, und es wird kein Konsolenfenster geöffnet.

 


Ihre Meinung

Wie hat Ihnen das Openbook gefallen? Wir freuen uns immer über Ihre Rückmeldung. Schreiben Sie uns gerne Ihr Feedback als E-Mail an kommunikation@rheinwerk-verlag.de.

<< zurück
 Zum Rheinwerk-Shop
Zum Rheinwerk-Shop: Python 3 Python 3
Jetzt Buch bestellen

 Buchempfehlungen
Zum Rheinwerk-Shop: Einstieg in Python
Einstieg in Python


Zum Rheinwerk-Shop: Python. Der Grundkurs
Python. Der Grundkurs


Zum Rheinwerk-Shop: Algorithmen mit Python
Algorithmen mit Python


Zum Rheinwerk-Shop: Objektorientierte Programmierung
Objektorientierte Programmierung


Zum Rheinwerk-Shop: Raspberry Pi. Das umfassende Handbuch
Raspberry Pi. Das umfassende Handbuch


Zum Rheinwerk-Shop: Roboter-Autos mit dem Raspberry Pi
Roboter-Autos mit dem Raspberry Pi


Zum Rheinwerk-Shop: Neuronale Netze programmieren mit Python
Neuronale Netze programmieren mit Python


 Lieferung
Versandkostenfrei bestellen in Deutschland, Österreich und der Schweiz
InfoInfo

 
 


Copyright © Rheinwerk Verlag GmbH 2020
Für Ihren privaten Gebrauch dürfen Sie die Online-Version natürlich ausdrucken. Ansonsten unterliegt das Openbook denselben Bestimmungen, wie die gebundene Ausgabe: Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt.
Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung, Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

 
[Rheinwerk Computing]

Rheinwerk Verlag GmbH, Rheinwerkallee 4, 53227 Bonn, Tel.: 0228.42150.0, Fax 0228.42150.77, service@rheinwerk-verlag.de

Cookie-Einstellungen ändern